
1

Anomaly Detection for Medical Images using
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Abstract— As the labeled anomalous medical images
are usually difficult to acquire, especially for rare dis-
eases, the deep learning based methods, which heavily
rely on the large amount of labeled data, cannot yield
a satisfactory performance. Compared to the anomalous
data, the normal images without the need of lesion an-
notation are much easier to collect. In this paper, we
propose an anomaly detection framework, namely SALAD,
extracting Self-supervised and trAnsLation-consistent fea-
tures for Anomaly Detection. The proposed SALAD is a
reconstruction-based method, which learns the manifold of
normal data through an encode-and-reconstruct translation
between image and latent spaces. In particular, two con-
straints (i.e., structure similarity loss and center constraint
loss) are proposed to regulate the cross-space (i.e., image
and feature) translation, which enforce the model to learn
translation-consistent and representative features from the
normal data. Furthermore, a self-supervised learning mod-
ule is engaged into our framework to further boost the
anomaly detection accuracy by deeply exploiting useful
information from the raw normal data. An anomaly score, as
a measure to separate the anomalous data from the healthy
ones, is constructed based on the learned self-supervised-
and-translation-consistent features. Extensive experiments
are conducted on optical coherence tomography (OCT) and
chest X-ray datasets. The experimental results demonstrate
the effectiveness of our approach.

Index Terms— Medical image analysis, anomaly detec-
tion, feature space constraint, generative adversarial net-
work

I. INTRODUCTION

Deep learning methods have achieved state-of-the-art per-
formance in many computer vision tasks. Its superior perfor-
mance mainly relies on large amounts of labeled data [1-
3]. However, annotated medical images are usually difficult
to acquire, especially for rare diseases, which limits the
application of deep learning models for medical diagnosis of
anomalous physiological readings. Compared to anomalous
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Fig. 1: Overview of the proposed anomaly detection approach.
There are two translations (i.e., image reconstruction and feature
reconstruction) between image and latent spaces in our framework
to train the same encoder (ME) and decoder (MD), which enforce
them to deeply exploit useful information from normal data for
anomaly detection.

cases, the annotation of normal images from healthy subjects
is much easier. In clinical practice, human experts are able to
identify unexpected cases that differ from healthy references.
To imitate the process and loose the annotation requirement
of anomalous data, researchers make their efforts to develop
anomaly detection approaches that select data showing solely
normal appearance to train their models.

Extensive studies have been proposed to explore the effec-
tiveness of anomaly detection for computer vision tasks [4, 5]
and medical image analysis [6-8], respectively. Most of the ex-
isting frameworks are based on the encoder-decoder structure,
which use the image reconstruction error as a metric to detect
outliers. Nevertheless, the accuracy of those anomaly detection
algorithms is still unsatisfactory, due to limited attention paid
on latent feature space. The performance can still be improved
if the feature constraint is concerned. In this paper, we propose
a novel anomaly detection approach that takes both image
and feature spaces into consideration. Particularly, the image
space and feature space are treated as two domains. As shown
in Fig. 1, an encode-and-reconstruct translation is performed
between the two spaces. Different from approaches exploiting
the image space only, our approach offers a robust feature
representation by deeply exploiting the intrinsic information
from normal data, thereby results in a higher sensitivity to
the anomalies. In other words, our model can reconstruct
normal images and corresponding features with a small error,
making the error of the anomalies more obvious. For this
purpose, two constraints (i.e., structure similarity loss and
center constraint) are proposed to enforce the network to
learn translation-consistent features from the image and latent
spaces, respectively.

The main contribution of our approach can be summarized



2

into four-fold:
• We propose a framework, namely SALAD,1 extract-

ing from Self-supervised and trAnsLation-consistent fea-
tures for Anomaly Detection. The proposed SALAD
is a reconstruction-based anomaly detection framework,
which performs image-feature translations to simultane-
ously extract useful information from both image and
latent feature spaces.

• Two additional constraints, i.e., structured similarity loss
and center constraint loss, are proposed to enforce the
network to maintain the consistency in image space and
feature space, respectively, during translation. Such a
translation-consistent feature representation extracts more
meaningful information of normal images and has a
higher sensitivity to anomalous data compared to the
existing approaches.

• A self-supervised learning module is combined in our
framework to deeply exploit useful information from the
raw normal data, which further boosts the classification
performance.

• We extensively evaluate the proposed SALAD model on
two publicly available datasets. The experimental results
demonstrate the effectiveness of our self-supervised and
translation-consistent features for anomaly detection on
different medical imaging applications.

The rest of our paper is organized as follows. In Section II,
we review the relevant studies on anomaly detection and self-
supervised learning. In Section III, we describe the proposed
SALAD model in details. The experiments and results are
presented and discussed in Section IV. Finally, Section V
concludes this study.

II. RELATED WORK

A. Anomaly detection
Anomaly detection, closely related to outlier detection

or novelty detection, is the identification of rare events or
observations which deviate from the distribution of normal
data. It has been applicable in a variety of domains, such as
fraud detection [9], network intrusion detection [10], medical
imaging lesion detection [6] and vehicle detection in crowed
scenes [11]. Based on the definition, it is natural to learn a
decision boundary to separate anomalous data from normal
data. One-class support vector machine [12] is an algorithm
which learns a discriminative hyperplane by modeling the
training distribution where a small region contains most of the
training examples and anomalies are away from this region.
Deep SVDD [13] utilizes convolutional networks to extract
the common factors of variation by minimizing the volume
of hypersphere that encloses the representations of normal
data. Gaussian mixture model (GMM) can also be used for
anomaly detection [14-17], which tends to model the distribu-
tion of normal data and detects anomalies based on probability.
In [16], the authors presented a deep auto-encoding method
to extract features and further fed the features to GMM to

1Like salad mixing various ingredients, our approach fuses the information
extracted from the image and feature spaces together for the robust anomaly
detection.

identify anomalous cases. These methods usually obtain a less
desirable performance when dealing with high-dimensional
data.

The reconstruction-based methods tend to learn a mapping
function to reconstruct normal data with the assumption that
anomalous ones will not be well recovered and lead to higher
residuals. Sparse coding and dictionary learning are traditional
ways to encode the normal patterns [18, 19], where the normal
data can be easily represented by the linear combination of
the bases which encode normal patterns in the training set,
while the anomalous data is not. Bergmann et al. [20] utilized
a student-teacher network for anomaly detection, where the
anomaly score is based on how much the output of student
network differs from that of the teacher network. AnoGAN [6]
was proposed with a generative adversarial network. The
query image is identified as abnormal if there is a large
difference between the query image and its reconstruction
which is generated by a latent code determined by iterative
progress. Further, a fast version of AnoGAN was proposed
in [8] termed as f-AnoGAN, where an encoder is trained to
replace the iterative process for determining the latent code.
Following the study of [6], Zenati et al. [21] used a bi-
directional generative adversarial network to map an image
to latent space, which reduces the computational complexity.
Approaches based on auto-encoders [22] and variational auto-
encoders [23] are very popular to learn the reconstruction
function. Feature matching metric [24] and structure similarity
metric [25] are also considered in the loss terms for better
reconstruction performance on normal data. Akcay et al. [4]
proposed a Ganomaly model which learns the image and latent
spaces jointly. Their encoder-decoder structure is followed
by another encoder to generate reconstructed latent vector
to capture features in the latent space. Similarly, Zhou et
al. [26] further introduced a sparsity regularization net to
restrict the bottleneck features in the latent space to enhance
the model ability. In [27], two discriminators were utilized
on both image and latent spaces together with a classifier
proposed to determine how well the given image resembles
the content of the given class. As a result, their model can
force the latent representation of any samples to reconstruct
images of the given class. Most of existing methods utilize
reconstruction error in image space as guideline, but feature
representations are not well considered in the above methods,
which motivates us to design constraints on the feature space
to achieve better performance.

B. Self-supervised learning

Self-supervised learning is a new paradigm to learn the un-
derlying information from raw unlabeled data. For 2D natural
images, various pretext tasks have been proposed. Doersch et
al. [28] proposed a framework, learning the visual features by
predicting the relative positions of two patches from the same
image. Another representative approach of relative position
prediction is the Jigsaw puzzles proposed by Noroozi et al.
[29]. This work requires deep learning networks to rearrange
the positions of nine patches cropped from the same image.
Based on the Jigsaw puzzles, some variants are developed
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and colorization can also be formulated as a pretext task
to pre-train neural networks [30-32]. More recently, studies
have proposed to adopt rotation prediction [33], transformation
estimation [34], and optical flow prediction [35] as additional
pretext tasks. For the applications with medical data, self-
supervised learning is also exploited and researchers take
medical domain knowledge into account when formulating the
pretext task [36-38]. For example, Zhou et al. [38] proposed
multiple proxy tasks to train the model from multiple perspec-
tives, including appearance, texture and context, which leads
to a more robust model across all target tasks and the model
achieves a superior performance to initialize parameters for
other applications.

III. METHOD

This work aims to train a model to identify anomalies
using only the normal data. The main difference between the
proposed approach and existing ones is that our framework
employs the feature space constraints together with image re-
construction to construct a comprehensive metric for anomaly
detection. In this section, we introduce the proposed anomaly
detection method in details.

A. Pipeline
Here, we give the definition of the anomaly detection

task. Given a large training dataset D with N normal train-
ing samples only (i.e., D = {x1, ..., xN}) and a test set
Dt with M normal and anomalous images (i.e., Dt =
{(xt1 , y1), ..., (xtM , yM )}), where yi ∈ {0, 1} is the image
label (0 for normal image and 1 for anomalous image), our
goal is to train a model that captures the distribution of training
dataset D and detect the anomalies in the test set Dt as outliers
during inference.

To achieve this, our SALAD approach encourages a model
to fully exploit the useful information contained in normal data
via the translation between image and feature spaces. There are
two adversarial reconstruction processes for the image space
and feature space, which are presented in the blue and orange
boxes in Fig. 2(a), respectively. Specifically, the encoder
translates the image x ∈ RW×H to a latent representation
z′ ∈ Rn×1 (ME : I → F), while the decoder reconstructs
the latent representation back to an image (MD : F → I).
Similar to CycleGAN for image domain transfer [39], we also
introduce two adversarial discriminators DI and DF for the
image space and feature space respectively. Furthermore, a
self-supervised learning module with proxy restoration tasks
is proposed to encourage ME to deeply exploit useful and
robust representations from raw normal images for feature
embedding.

Intuitively, if the feature representations of normal data
generated by ME are tightly clustered in the latent feature
manifold, the encoded feature of an anomaly image lying
far from the normal cluster is easy to identify. Hence, we
propose a center constraint to compact the cluster of feature
representations extracted from the normal images in the latent
feature space. The regularization on the feature space can
boost the robustness of the features learned by ME , which

is the main difference between our approach to the existing
frameworks.

The inference process is presented in Fig. 2 (b). For a
test image xt, an anomaly score is constructed by measuring
the difference between the feature representation zt and the
reconstructed feature ẑt of reconstructed image x̂t to identify
the anomalies from normal cases.

B. Adversarial reconstruction in image and feature
spaces

There are two adversarial reconstruction processes for the
image space and feature space in our SALAD framework
as shown in Fig. 2(a). On one hand, similar to the image-
space-only approaches, a reconstruction error is adopted to
supervise the image space reconstruction process. On the other
hand, the sampled feature vector z in the feature space is
fed to the decoder-encoder architecture for the feature space
reconstruction. A reconstruction error between the sampled
feature vector z and reconstructed features ẑ is calculated to
supervise the reconstruction process. To ensure the encoded
feature representation z′ (a.k.a. ME(x)) and synthetic image
x′ (a.k.a. MD(z)) have the same distributions to the normal
class, two discriminators DF and DI are implemented. In
specific, DF is utilized to distinguish z′ from the sampled
feature vector z which is generated by a multivariate Gaussian
distribution. DI is trained to identify x′ from the original
image x. Therefore, the whole framework can be adversarially
trained. With the reconstructions in the two spaces, the encoder
and decoder can excellently construct the manifold of normal
data by fully exploiting the useful information from both
image and feature spaces.

C. Self-supervised learning module
Detecting anomalies only by learning the normal data is a

challenging task, thus we propose to leverage self-supervised
learning technique to assist the reconstruction process and
thereby improve the model capability. The self-supervised
learning module is shown in the dashed red box of Fig. 2
(a), where restoration-based proxy tasks are constructed by
perturbing the images with three strategies. The intuition
underlying this module is that the model is expected to
learn useful information from the raw data via self-supervised
learning, which can thereby assist the following data recon-
struction stage for anomaly detection. The same encoder-
decoder architecture is adopted for the restoration proxy task.
In the experiments, the encoder shares weights with the
one for image-wise adversarial reconstruction to improve the
robustness of embedded feature z′. We present the detailed
information of each kind of perturbations adopted in our self-
supervised learning module in the following.

a) In-painting: The in-painting perturbation is performed
by removing some regions in the image. The restoration
of the partially blocked image regions drives the model to
explicitly learn the anatomic information of normal data. In our
experiments, we randomly crop five tiles with random sizes
ranging in [WH

64 , WH
25 ] from the images, and fill the cropped

areas with random noises drawn from uniform distribution.
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Fig. 2: Flowchart of the proposed SALAD approach. The yellow box shows the training stage of our approach where the reconstruction is
applied on both image and feature spaces; The test stage of our approach is illustrated in green box; The legend of symbols are presented
in gray box.

Fig. 3: Three proxy tasks utilized in our self-supervised learning
module. From left to right are original image, image after in-painting,
image after local pixel shuffling and image after non-linear intensity
transformation, respectively.

b) Local pixel shuffling: The conventional pixel shuffling
permutation randomly switches the pixel values of different
positions in a given image. In our framework, we adopt a so-
called local pixel shuffling method to perturb the pixel values.
Specifically, we first sample a set of tiles (300 patches are
selected with random size ranging from 1 to WH

100 in our
experiment), and then perform the pixel shuffling in each
tile for content permutation. Different from the in-painting
perturbation, local pixel shuffling encourages the model to
learn local boundaries and texture information.

c) Non-linear intensity transformation: The pixel intensity in
medical images contains rich information related to the shape,
texture, etc. Thus, a non-linear transformation is adopted
to perturb the pixel intensities. Reconstructing from such a
perturbed image can improve the robustness of the model
to intensity variations among samples. In the experiments,
the Bezier curve function [40] with three randomly selected
control points is used to alter the pixel intensity.

The examples of images perturbed by different proxy tasks

are shown in Fig. 3. From left to right are original image,
transformation results of in-painting, local pixel shuffling and
non-linear intensity transformation, respectively. One of the
perturbations is randomly selected to disarrange an input
image. The encoder-decoder is trained to restore the input
image from the perturbed one. Therefore, the original input
image is used as the supervision signal for the restoration
proxy task. We follow the same training procedure of [38].
The encoder is expected to exploit more useful information
from the raw image data for anomaly detection via the self-
supervised training. Compared with denoising auto-encoder,
the proxy tasks utilized in this work are designed from various
aspects, such as texture, context and anatomical structure,
which results in a robust feature representation for anomaly
detection.

D. Loss functions

During training, the encoder ME , decoder MD and dis-
criminators (DF and DI) are alternatively optimized. The
whole framework is supervised by an objective function con-
sisting of four losses (i.e., adversarial loss, reconstruction loss,
feature center loss and restoration loss), which are presented
in details in the following.

a) Adversarial loss: As shown in Fig. 2(a), there are two
discriminators for image and feature spaces, respectively. The
discriminator in the image space (DI) aims to distinguish
between the original normal image and the one (i.e., MD(z)
or x′) reconstructed from a vector sampled from the Gaussian
distribution. The discriminator implemented in the feature
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space (DF ) shares the similar idea, which is trained to
differentiate between the feature encoded from a normal image
(i.e., ME(x) or z′) and the one sampled from the Gaussian
distribution. The least squared adversarial loss is used to
optimize the discriminators:

min
DI
LDI =

1

2
Ez∼pz

|DI(MD(z))− a|2+

1

2
Ex∼D|DI(x)− b|2,

(1)

and

min
DF
LDF =

1

2
EI∼D|DF (ME(x))− a|2+

1

2
Ez∼pz

|DF (z)− b|2,
(2)

where x and z are the original image and sampled vector,
respectively; a and b are set to 0 and 1, respectively. Similar to
[41], a standard multivariate Gaussian distribution Nn(µ,Σ)
is chosen for distribution pz where each component of z
is a zero-mean unit-variance normally distributed random
variable, i.e., zn ∼ N (0, 1) for all n.

Through the adversarial training with the discriminators,
the capacity of encoder-decoder on feature extraction and
image reconstruction can be improved accordingly. Ideally,
the encoded featureME(x) and translated imageMD(z) can
gradually fool the corresponding discriminator by approaching
the similar distributions as the real ones. The adversarial loss
supervising this minimax game between encoder-decoder and
discriminators is formulated as following:

min
ME

min
MD

Ladv =
1

2
Ex∼D|DF (ME(x))− c|2+

1

2
Ez∼pz

|DI(MD(z))− c|2,
(3)

where c is set to 1.
b) Reconstruction loss: Apart from the adversarial loss,

which aligns the distribution of encoded feature and synthe-
sized image to the real ones, we also calculate the reconstruc-
tion errors to encourage the encoder-decoder to exploit useful
information from data for plausible reconstruction results.
For the image space reconstruction, we employ the structure
similarity loss for the encoder-decoder. Different from the
widely-used pixel-wise L1 loss, the structure similarity loss
takes the luminance, contrast and anatomical information into
account [42], which is less sensitive to the location-shift
between the original image and its reconstruction and thereby
enables the network easier to converge. Hence, the model
trained with the structure similarity loss tends to focus on
the global information (e.g., anatomical structures) rather than
the local features (e.g., pixel intensity) during the image
reconstruction. The structure similarity loss optimizing the
encoder-decoder can be formulated as:

minLstr = −SSIM(x, x̂)

= −SSIM(x,MD(ME(x)).
(4)

Here, the SSIM(·) is defined as:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
, (5)

where x and x̂ are the input and reconstructed images,
respectively; µ is the mean intensity of image, σ denotes the
standard deviation of image and σxx̂ stands for the covariance
of two images. The constants c1 and c2 are set to 0.01 and
0.03, respectively.

For the adversarial reconstruction in the feature space, the
element-wise L1 loss is utilized to minimize the distance
between the reconstructed feature ẑ and the sampled vector
z, which can be defined as:

minLfea = |ẑ − z| = |ME(MD(z))− z|. (6)

c) Center constraint loss: A compact cluster of features
encoded from images belonging to normal class in the latent
feature space makes the model easier to identify the outliers
as anomalies. To this end, we propose to adopt a center
constraint on the latent space to push the encoded features
towards the center of the cluster, which reduces the intra-class
dissimilarity.

The feature center loss can be optimized with:

minLct =
1

2
||z′ − C||22 =

1

2
||ME(x)− C||22, (7)

where C ∈ Rn denotes the normal class center on the latent
feature manifold and is updated based on the feature distances
following [43].

d) Restoration loss: As aforementioned, to further improve
the model ability, we propose a self-supervised learning mod-
ule for the framework. The input images are perturbed by a
transformation randomly selected from three candidates (i.e.,
in-painting, local pixel shuffling and non-linear intensity trans-
formation). The encoder ME and decoder M′D are required
to restore the original input image from the perturbed one.
Here, the encoderME shares weights with the one for image
and feature reconstruction, while the decoder M′D has the
same structure to MD but with different network parameters.
The original input image x is used as the supervision signal
for the self-supervised learning module. The pixel-wise L1

loss is adopted to supervise the proxy tasks to learn a better
representation, which can be written as:

minLself = |x′s − x| = |M′D(ME(xs))− x|, (8)

where xs is the perturbed input image and x′s is the restored
result.

Finally, with the previously defined loss functions, the
overall objective to optimize the encoder ME and decoder
MD can be formulated as:

L = αLadv + βLstr + γLfea + δLct + ηLself , (9)

where α, β, γ, δ, η are the loss weights.

E. Test stage

The test phase is illustrated in Fig. 2 (b). A test image xt
is fed to the encoder ME and decoder MD, which yields a
reconstructed image x̂t and an encoded feature representation
zt. The reconstructed image x̂t is then passed through the
ME again to generate the feature ẑt. The reconstruction
error between zt and ẑt is adopted as a metric, namely
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anomaly score A, for anomaly detection, which is similar to
most existing studies [4, 8]. Compared with the image-based
reconstruction approaches, the feature ẑt obtained with three
translations (xt → zt, zt → x̂t and x̂t → ẑt) can amplify
the reconstruction error of anomalous data, which leads to
a higher sensitivity for anomalies. The feature ẑt with low
reconstruction error (A < τ ) to the encoded one zt after three
translations, i.e., translation-consistent, is treated as normal
data and otherwise anomaly.

IV. EXPERIMENTS

In this section, we validate the proposed SALAD framework
on detecting anomalies from two modalities of medical data,
i.e., optical coherence tomography (OCT) and chest X-ray
images. First, the detail of each dataset is introduced, and
then the experimental results comparing with state-of-the-art
methods are given. Finally, an ablation study of our model
is conducted to verify the contribution made by each of the
proposed loss functions.

A. Datasets

Two publicly available datasets, i.e., OCT dataset and chest
X-ray dataset [44], are adopted to evaluate the proposed
SALAD approach.

a) OCT dataset: The dataset is categorized into four
classes, including normal, drusen, diabetic macular edema
(DME) and choroidal neovascularization (CNV), which are
already separated to the training and test sets for a fair com-
parison. We use the 17,922 normal images in the training set to
train the SALAD framework and evaluate its performance on
the public test set, consisting of 769 images from four classes.
Since the images from the dataset are of different sizes, we
uniform them to the same size of 256× 256 pixels.

b) Chest X-ray dataset: The chest X-ray dataset consists of
normal and pneumonia images collected from 6,480 patients.
The image-level annotations are provided for each subject.
There are 1,349 normal images in the training set, while
234 normal images and 390 pneumonia images are contained
in the test set. Similar to the OCT dataset, we resize the
chest X-ray images to a standard size of 256 × 256 pixels.
Compared to OCT images, the chest X-ray images, containing
multiple anatomical structures such as lung and bone, are more
complicated. Such images increase the difficulty for accurate
anomaly detection, since the lesions may appear at different
positions in chest X-ray images.

B. Experimental settings

Our approach is implemented using the PyTorch toolbox.
For the two datasets, we use the bicubic interpolation for image
size standardization and uniform the pixel values of an image
to the range [−1, 1]. The Adam optimizer [45] with a learning
rate of 0.0002 is adopted for network optimization. The model
is trained for 200 epochs with mini-batch size of 64. We keep
the same learning rate for the first 100 epochs and linearly
decay the rate to zero over the next 100 epochs. Following
the hyperparameter settings in [39], the loss weights (β, γ, δ,

and η) in our experiments are all set to 10 except α is set
to 1. The encoder and decoder consist of eight convolutional
or deconvolutional layers, respectively. Each convolutional or
deconvolutional layer is with the kernel size of 4 and stride
of 2 to downsample or upsample the feature maps and it
finally leads to a one-dimensional vector or an image. The
InstanceNorm and LeakyReLU are used after each convo-
lutional/deconvolutional layer. The PatchGAN [46] is used
as the backbone for image space discriminator. The feature
discriminator is a multi-layer perceptron (MLP) network.

In our experiments, apart from the original auto-encoder and
variational auto-encoder (VAE) [41] using the reconstruction
error for anomaly detection, several state-of-the-art anomaly
detection methods are involved for comparison:
• Auto-encoder consists of two sub-networks, i.e. encoder

and decoder, to learn the reconstruction of an image by
mapping the input to latent space and remapping back to
image space.

• VAE [41] is a variant of auto-encoder which not only pe-
nalizes the reconstruction difference but also regularizes
the latent encoding distribution. This property makes the
model capable of learning the data distribution instead of
just remember the training data.

• f-AnoGAN [8] is a generative adversarial framework,
which learns a mapping between image and latent spaces.
The f-AnoGAN adopts the image and feature reconstruc-
tion error as the metric to identify anomalous images.

• Ganomaly [4] learns the image and latent spaces jointly.
It has an encoder-decoder-encoder structure, which gen-
erates reconstructed latent vector to capture features in
the latent space for anomaly detection.

The area under the receiver operating characteristic (ROC)
curve (AUC), F1-score, average classification accuracy (ACC),
sensitivity (SEN) and specificity (SPE) are adopted as the
evaluation metrics. AUC and F1-score are the evaluation of
overall performance, while SEN and SPE focus on the positive
samples and negative samples, respectively. Our results are the
average score of three runs. The threshold used for evaluation
is determined based on the best value of F1-score.

C. Comparison with state of the art
In this section, we compare the performance of our SALAD

framework with the state-of-the-art methods on OCT and chest
X-ray datasets.

1) Results on OCT dataset: We first evaluate the perfor-
mance of our SALAD and state-of-the-art approaches on
the OCT dataset. The experimental results are presented in
Table I. It can be observed that the image-reconstruction-
based approaches (i.e., the original auto-encoder, VAE and
f-AnoGAN) achieve relatively lower classification accuracy
than the ones using information extracted from both image
and latent spaces (i.e., Ganomaly and our SALAD). The
experimental results demonstrate that the image reconstruction
error may be insufficient for the robust anomaly detection,
which is also revealed by the existing study [4].

With the aid of information extracted from the latent
feature space, the Ganomaly model yields a better anomaly
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TABLE I: Classification performance (AUC, F1 (%), ACC (%), SEN (%) and SPE (%)) yielded by different algorithms on OCT and chest
X-ray datasets.

OCT Chest X-Ray
AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE

Auto-encoder 0.7779 85.79 78.28 94.38 41.70 0.5987 77.20 63.40 98.97 3.86
VAE [41] 0.8040 85.55 77.63 95.32 37.45 0.6181 77.37 64.04 98.21 6.87
f-AnoGAN [8] 0.8335 84.73 77.50 89.89 49.36 0.7546 81.00 74.00 88.97 36.48
Ganomaly [4] 0.8402 85.76 77.24 98.69 28.51 0.7800 78.97 69.98 90.00 48.93
SSIM-based AE 0.8664 89.10 83.88 94.94 58.72 0.7937 81.16 72.87 93.33 38.62
SALAD (ours) 0.9642 93.42 90.64 95.69 79.15 0.8265 82.14 75.92 88.46 54.94

(b) ROC curve on chest X-ray dataset
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Fig. 4: Receiver operating characteristic curve (ROC) of the comparison methods on OCT and chest X-ray datasets.

detection performance—an AUC of 0.8402 is achieved. Com-
pared with Ganomaly, our SALAD framework formulates a
dual-track translation (i.e., image-feature-image and feature-
image-feature) and implements manifold constraints to enforce
the model to deeply exploit useful information for anomaly
detection from the image and latent spaces, resulting in
a remarkable improvement of AUC (+0.1240). The center
loss diminishes the distances among the representations of
normal data, which amplifies the feature reconstruction error
of anomalous data from the other side. A thorough analysis
of the contribution made by each loss function is presented in
the following section.

Furthermore, apart from AUC, our SALAD approach
achieves the best F1-score (93.42%) and ACC (90.64%)
among the listed algorithms, which are 7.63% and 12.36%
higher than the runner-up SSIM-based auto-encoder in F1-
score and ACC, respectively. Although Ganomaly yields the
best sensitivity of 98.69% with a significant sacrifice in
specificity, the result of our SALAD approach (i.e., 95.69%) is
still comparable. We also draw the ROC curve in Fig. 4 (a) for
performance evaluation. It can be observed that our SALAD
approach outperforms the state-of-the-art methods by a large
margin.

2) Results on chest X-ray dataset: We further test our
SALAD approach on the chest X-ray dataset. The experi-
mental results are presented in Table I. The corresponding
ROC curve is also drawn in Fig. 4 (b). As shown in Table I,
similar trend of accuracy variation to the OCT dataset is

TABLE II: The standard deviation of three-run experimental results
on the OCT and Chest X-Ray datasets with evaluation metrics of
AUC, F1 (%), ACC (%), SEN (%), SPE (%).

AUC F1 ACC SEN SPE
OCT 0.0111 1.08 1.58 1.14 0.05
Chest X-ray 0.0083 0.32 0.89 1.35 0.05

observed—our approach using both image and feature infor-
mation together with center constraint surpasses the image-
reconstruction-based methods. Compared with the results on
the OCT dataset, the anomaly detection accuracy of the
listed models consistently decreases. The underlying reason
for the performance degradation is that the content of chest
X-ray image is more complicated than the OCT image, which
increases the difficulty for feature embedding and thereby
decreases the performance not only for image-reconstruction-
based approaches (e.g., auto-encoder and f-AnoGAN) but also
the ones utilizing the information from both spaces (Ganomaly
and SALAD). Nevertheless, the proposed SALAD approach
obtains the highest AUC (0.8265), F1-score (82.14%) and
ACC (75.92%) on the chest X-ray dataset, validating the
robustness of the proposed SALAD approach. We also display
the standard deviation of three-run experimental results on the
OCT and Chest X-Ray datasets, respectively, with different
evaluation metrics in Table. II.
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TABLE III: Anomaly detection performance of our SALAD frame-
work with different loss functions in the image and feature spaces on
the OCT dataset with AUC, F1 (%), ACC (%), SEN (%) and SPE
(%).2

AUC F1 ACC SEN SPE
Image space

L1 0.7447 84.10 74.77 96.07 26.38
Lstr 0.8886 89.03 83.75 94.94 58.30

Feature space
Lstr + LKL 0.9086 89.10 84.92 88.76 76.17
Lstr + Lct 0.9328 91.50 87.52 96.82 66.38

D. Ablation study
We conduct a thorough ablation study on the OCT dataset

to evaluate the contribution made by each component of
the proposed SALAD framework and present the evaluation
results in this section.

1) Losses in image and feature spaces: We evaluate the per-
formance of SALAD framework with different loss functions
used for image and feature spaces, while the self-supervised
learning module is excluded for all the experiments (i.e.,
without Lself ). Besides, the feature reconstruction loss Lfea

and adversarial loss Ladv are used as default settings. The
evaluation results are shown in Table III.

a) Image space reconstruction: It can be observed that the
L1-only model yields a relatively low AUC (0.7447) with the
optimal loss weights, while the AUC is increased to 0.8886 by
the Lstr model with initial loss weight setting (i.e., β = 10).
The large difference between the model L1 and the model
Lstr indicates the benefit of our Lstr loss. The same trend can
also be found in auto-encoder, which increase the performance
from 0.7779 to 0.8664. The results demonstrate that the Lstr

enables the network to learn richer information (e.g., texture
and anatomical information) from the image and extract more
robust feature representation for anomaly detection than the
pixel-wise L1 loss.

b) Feature space constraint: The center constraint loss Lct

is proposed to engage the prior information in the feature
space, which enforces the model to compact the cluster
of feature representation extracted from normal images. As
shown in Table III, it boosts the AUC to 0.9328, which
is about 0.05 higher than the Lstr-only model. To further
demonstrate the superior performance of the proposed center
loss, we select the widely-used KL-divergence loss LKL for
comparison. Although the model trained with KL-divergence
constraint (i.e. Lstr + LKL) achieves an AUC of 0.9086, the
performance of our model (i.e. Lstr + Lct) is higher with an
improvement of 0.03.

The experimental results thereby validate the effectiveness
of the proposed structure similarity loss and center constraint,
which successfully assist the network to learn a robust feature
representation from normal images for anomaly detection.

2) Self-supervised learning module: The self-supervised
learning module is implemented to fully exploit useful in-

2Note that all the models compared in the table are trained together with
feature reconstruction loss Lfea and adversarial loss Ladv while not using
self-supervised learning module (i.e., without Lself ).

TABLE IV: Performance (AUC, F1 (%), ACC (%), SEN (%) and
SPE (%)) of models trained with different settings of self-supervised
learning module on the OCT dataset, where structure similarity
in image space and center constraint in feature space are utilized
(SSL: self-supervised learning module; E.: encoder ME ; D.: decoder
MD).

AUC F1 ACC SEN SPE
w/o SSL 0.9328 91.5 87.52 96.82 66.38

w/ SSL E. + D. 0.9309 91.27 87.26 95.88 67.66
E. 0.9642 93.42 90.64 95.69 79.15

TABLE V: Ablation study on different metrics used for anomaly
score A on the OCT dataset with AUC, F1 (%), ACC (%), SEN (%)
and SPE (%).

AUC F1 ACC SEN SPE
AI 0.8696 88.50 82.96 94.38 57.02
AC 0.8299 85.54 78.67 90.82 51.06
AF 0.9642 93.42 90.64 95.69 79.15

formation from the raw normal data for networks to accu-
rately detect anomalous images. As aforementioned, the self-
supervised learning module consists of an encoder sharing
weights with the image reconstruction branch and a specific
decoder, due to the different optimization directions between
the image reconstruction and proxy task. To validate the
previous statement, we evaluate the performance of SALAD
framework using weight-sharing encoder-decoder and weight-
sharing encoder-only, respectively. As shown in Table IV,
the anomaly detection performance of SALAD framework
degrades to an AUC of 0.9309 using weight-sharing encoder-
decoder, which is just comparable to the SALAD without
the self-supervised learning module. In contrast, our SALAD
only sharing the encoder achieves a significant improve-
ment (+0.0314) for AUC. To further validate the sharing-
encoder-only design, we conduct an extra experiment—the
self-supervised learning module shares the parameters of the
encoder and the last few layers of the decoder with the
image reconstruction branch. Such a framework yields an
AUC of 0.9436—higher than the sharing-weight encoder-
decoder SALAD but still lower than the encoder-only one,
which demonstrates the negative effect caused by sharing the
parameter of decoder between the two tasks.

3) Metric for anomaly detection: Since our SALAD involves
different errors, such as image-reconstruction and feature-
reconstruction errors, both of which can be used as the
metric for anomaly detection, we conduct an ablation study to
evaluate the performance of SALAD using different metrics.
Three kinds of errors are involved for comparison:

Error in the image space: (AI) calculates the reconstruction
error of images AI = |xt − x̂t|.

Error in the center distance: (AC) calculates the distance
between feature representation zt generated by ME and the
center C obtained from normal training data, i.e., AC = |zt−
C|.

Error in the feature space: (AF ) calculates the reconstruc-
tion error of feature representations AF = |zt − ẑt|.

The experimental results are shown in Table V. Compared
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Fig. 5: Reconstruction results of our model on the OCT dataset including two exemplar images for normal, drusen, DME, CNV cases,
respectively.
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Fig. 6: Reconstruction results of our model on the chest X-ray
dataset where samples of each class (normal and anomalous data)
are displayed.

with the center distance, the reconstruction-based metrics
provide a more intuitive measurement for anomaly detec-
tion, which consistently surpass the center distance metric.
Compared with image space reconstruction error (AI), the
feature space one (AF ) alleviates the influence caused by
local information, such as position shifting and local pixel
difference, and therefore achieves a more robust anomaly
detection performance. Hence, the proposed SALAD uses the
feature space reconstruction error as the metric.

E. Visualization

In this section, we visualize the reconstructed images and
learned features to further demonstrate the effectiveness of our
SALAD framework.

1) Visualization of reconstructed images: The OCT images
reconstructed by our SALAD approach are shown in Fig. 5,
including two exemplars of each category (i.e., normal, drusen,
DME and CNV). The original images xt, reconstructed images
x̂t and residual images (xt − x̂t) are presented in the first,
second and third rows of the figure, respectively. We can

TABLE VI: Comparison of the reconstruction errors in the fea-
ture space between normal data and anomalous data with mean
and standard deviation on OCT and chest X-ray datasets (Pneum.:
Pneumonia).

OCT Chest X-Ray
Normal 0.0112± 0.0018 Normal 0.0250 ± 0.0067
CNV 0.0229 ± 0.0051

Pneum. 0.0449 ± 0.0278DME 0.0200 ± 0.0045
Drusen 0.0162 ± 0.0028

observe that the SALAD highlights the lesion areas with
a large image-based reconstruction error, as illustrated in
the residual images. Hence, the following image-to-feature
translation can amplify the error and accordingly increase the
model sensitivity to anomalies. Conversely, the normal data
is well reconstructed with negligible reconstruction error. The
reconstructed chest X-ray images are presented in Fig. 6. We
have similar observations to the OCT reconstruction results—
our SALAD framework can distinguish pneumonia images
with large reconstruction difference.

We also quantitatively analyze the reconstruction errors (A)
for normal and anomalous data in latent space, respectively, as
presented in Table VI, where the mean error and standard devi-
ation for different classes are calculated. For the OCT dataset,
the reconstruction error of normal images is 0.0112± 0.0018,
which is significantly smaller than those of the anomalous
classes (i.e., CNV, DME and drusen). The same trend is
observed on the chest X-ray dataset. The error difference
between normal images and anomalous images illustrates that
our approach can well distinguish the anomalies from normal
data with the feature space reconstruction error.

2) Feature visualization using t-SNE: The center loss com-
pacts the normal cluster in the latent space, which leads to an
easier identification of anomalies. To validate this claim, we
use the t-SNE method [47] to visualize the normal cluster
with and without the proposed center loss for illustration
purpose. The visualization result is shown in Fig. 7—the
features embedded by the model trained with and without
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Fig. 7: Visualization of compressed feature distribution generated by
model trained with center constraint (red points) and without center
constraint (blue points) via t-SNE. (a) The overall feature distribution.
(b) Zoomed-in view of feature cloud.

the proposed center constraint Lct are drawn with red and
blue points, respectively. It can be observed that the cluster
generated by the model trained without the proposed center
loss has a sparse distribution with lots of outliers. Different
from that, the features generated by the SALAD using the
center constraint locate closer to each other and lead to a
compact cluster, which therefore decreases the possibility of
false-positive and increases model sensitivity to anomalies.

V. CONCLUSION

In this paper, we proposed a framework, namely SALAD,
extracting Self-supervised and trAnsLation-consistent features
for Anomaly Detection, which is only trained with the normal
data. We considered the reconstruction tasks on both the
image and feature spaces, which helps our model to learn
a meaningful representation. The reconstruction error in the
latent feature space is utilized for distinguishing the anomalies
in the test stage. In order to pay attention to the structure
but not detailed difference on the reconstructed map, we
introduced a structure similarity loss instead of pixel-wise L1

loss. By engaging center constraint on the feature space and
self-supervised learning module, our approach enforces the
encoder to learn a desirable feature representation of normal
data, which further improves the classification performance.
Experiments on different medical image datasets demonstrated
the effectiveness of our approach. In the future work, we will
explore the model ability on more complex image content and
investigate on more medical applications.
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